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Recently, however, it has been established (Grant et al. 1970, Grant 
and Yoffe 1970, 1971) that pressure coefficients in a number of materials 
including both cubic and layer crystals (e.g. TlBr, PbI2, As2Sea, etc.) 
do normally increase with increasing temperature. It should be possible 
to describe the implied temperature dependence of the deformation 
potential in terms of the pseudopotential model, but there is as yet to our 
knowledge no detailed theory to account for this effect. 

We will then consider the increase in pressure coefficients between 
SOcK and 2900

K as 'normal' behaviour, and reserve the previous 
explanation involving a reduction in the exciton binding energy for the 
non-linear region of pressure shift observed by Connell et al. at pressures 
in excess of 30 kilobars. 

4.1. 3. Lattice dilatation and the electron- lattice interaction 

An important reason for measuring the pressure coefficient of interband 
transitions is to determine how much of the temperature coefficient of the 
energy of the interband transition in question arises from thermal 
expansion and how much from the electron- lattice interaction. Since 
the energy of a transition is a function of the pressure, temperature and 
volume of the solid, it may readily be shown that 
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where the expansion coefficient £Y = IJV . (oV/oT)p and the isothermal 
compressibility fJ= -l/V . (OV/OP)T' 

This equation expresses the temperature coefficient of an energy gap E 
as the sum of two terms. The first term on the right-hand side relates 
to the change in energy gap with temperature at constant volume, and 
is a measure of the electron- lattice interaction, or the degree to which 
energy levels are perturbed by lattice vibrations. The second term 
expresses the energy change due to lattice expansion in terms of the 
expansion coefficient, the isothermal compressibility and the pressure 
coefficient. Independent measurements of the temperature and pressure 
coefficients therefore permit an estimate to be made of the electron- lattice 
interaction, provided that £Y and fJ are known. 

In these layer crystals the crystallographic c axis is normal to the 
plane of the layers, and we may take two other equivalent directions as 
lying in the plane of the layers. To take account of this crystal anisotropy 
the last term in eqn. (1) is modified (Davies 1970, private communication) 
to become 
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whete the subscripts denote directions parallel II and perpendicular .1 to 
the c axis. The pressure coefficient refers to hydrostatic pressure, and 
the compressibilities refer to strains produced by hydrostatic pressure. 
This expression naturally reduces to the original one for a cubic system. 

Flack (1970) has measured fJ ll and fJ .l for several layer crystals, and his 
results are presented in table 3. The compressibility is, as expected, 
considerably greater parallel to the c axis than in a direction lying parallel 
to the crystal layers. This effect is to be attributed to the easy reduction 
under pressure in the van del' Waals gap between successive MX 2 

sandwiches. 
Young (1968) measured the variation with temperature of the lattice 

parameter in MoS 2 normal to the c axis, using crystals mounted on a cold 
stage in an electron microscope. The value of (X .l obtained from his 
data is (X .l = 32 x lO- s/deg. at 290oK. 

No direct measurement of (Xu for MoS 2 has been found in the literature. 
Brixner (1963) has however measured (X u and (X .l for tungsten diselenide 
WSe 2, which has the same crystal structure as MoS 2 • Brixner obtained 
(X u = 10·6 x 1O- 6/deg., and (X.l = 6·8 x 10~/deg. The large discrepancy in 
the above values of (X.l for MoS 2 and WSe2 is surprising, but in the 
absence of a direct measurement, we estimate (Xu for MoS 2, using the same 
ratio between (X u and (X .l as for WSe 2, to be (x , =50 x 10- 6/deg. for MoS 2 

at 290oK. 
The above values of expansion coefficient and compressibility, together 

with the pressure coefficient of peak A in 2H- MoS2 at 293°K, lead to a 
lattice dilatation term of value, -1·0 x 10-4 evjdeg. 

The temperature coefficient at room temperature of the A peak in 
' freely mounted' crystals of 2H- MoS 2 (Frindt and Yoffe 1963) can be 
estimated as - 3·0 x 10-4 ev /deg., so that the lattice dilatation accounts for 
just one-third of th~ temperature shift of peak A at room temperature. 
The electron- lattice t erm is left with the value (from eqn. 0)) 
- 2·0 X 10-4 ev/deg., with the usual negative sign predicted by Fan 
(1951, 1967). 

An estimate may . be made of the electron-lattice interaction' term at 
800 K assuming that the ratio involving expansion coefficients and 
compressibilities in the expression (2) does not change significantly 
between 2900 K and 80oK. The temperature coefficient of peak A at 800 K 
from Frindt and Yoffe (1963) is approximately -1,7 x 10-4 ev/deg. 
The pressure coefficient of peak A at OOK given in table 1 leads to a lattice 
dilatation term of value - 0·8 x 10-4 ev/deg., so that the electron- lattice 
term must have the yalue - 0·9 x 10-4 ev/deg. 

The reduction in magnitude of the electron-lattice term at low tem­
perature is in agreement with Fan's theory of the electron- lattice 
interaction. Accurate measurements of expansion coefficient and 
compressibility as functions of temperature are required, however, before 
weight can be attached to the numerical value of the electron-lattice 
term at 80oK. 
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